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Abstract—Detecting coherent groups is fundamentally important for crowd behavior analysis. In the past few decades, plenty of works
have been conducted on this topic, but most of them have limitations due to the insufficient utilization of crowd properties and the
arbitrary processing of individuals. In this study, a Multiview-based Parameter Free framework (MPF) is proposed. Based on the
L1-norm and L2-norm, we design two versions of the multiview clustering method, which is the main part of the proposed framework.
This paper presents the contributions on three aspects: (1) a new structural context descriptor is designed to characterize the structural
properties of individuals in crowd scenes; (2) a self-weighted multiview clustering method is proposed to cluster feature points by
incorporating their orientation and context similarities; (3) a novel framework is introduced for group detection, which is able to
determine the group number automatically without any parameter or threshold to be tuned. The effectiveness of the proposed
framework is evaluated on real-world crowd videos, and the experimental results show its promising performance on group detection.
In addition, the proposed multiview clustering method is also evaluated on a synthetic dataset and several standard benchmarks, and
its superiority over the state-of-the-art competitors is demonstrated.
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1 INTRODUCTION

P EOPLE in crowd scenes tend to connect with the sur-
roundings and form coherent groups. Within each

group, the pedestrians share similar motion patterns and
exhibit collective behaviors. As the primary components
that make up a crowd, groups convey sufficient informa-
tion about the crowd phenomenon, and provide a mid-
level representation of the semantic behaviors. So group
detection has become an attractive research area in the field
of video surveillance, and been applied into a wide range of
video applications, such as event recognition [1], [2], [3], [4],
crowd tracking [5], [6], [7], [8], crowd counting [9], [10], [11]
and semantic scene segmentation [12]. Though tremendous
efforts [12], [13], [14], [15], [16], [17], [18], [19], [20] toward
group detection have been made in the past years, there is
still room for improvement.

The major difficulty in group detection is that the study
object is too microcosmic. Due to the severe occlusion in
crowd scenes, many state-of-the-art methods detect and
track feature points to avoid identifying pedestrians directly,
and then combine those points with similar motions into
the same group. However, there are always many points on
one pedestrian and the velocities of these points may have
big differences. For example, the points on a pedestrian’s
head may move in the opposite direction to those ones on
the feet. This phenomenon is named as motion deviation in
this paper. Due to motion deviation, the velocities of feature
points are too microcosmic to reflect the real movements of
pedestrians accurately. Moreover, due to the locality proper-
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ty, the velocity of a feature point may fluctuate dramatically
between consecutive frames. Instead of extracting feature
points, Solera et al. [21] detected small groups based on the
results of pedestrian detector. However, they consider each
pedestrian to be a point, and then the influence of velocity
fluctuation also exists. Thus, it’s necessary to develop a sta-
ble descriptor to perceive the pedestrians’ motion patterns
from the macroscopic view.

In addition, the lack of prior is also a barrier for group
detection. Group detection aims to cluster the individuals
with similar behaviors. However, unlike standard clustering
tasks, the definition of crowd group is relatively subjective,
and it is hard to obtain the prior for each crowd scene, such
as the desired cluster number [22] and the preference about
anchors [23]. Thus, many clustering methods cannot be used
in group detection, and some previous works cluster the
feature points by thresholding the adjacent graph [12], [16],
[17], [18], [19], [20]. This strategy is dominant in group
detection, since it doesn’t need the prior about the group
number and achieves manifest performance on some occa-
sions. However, it’s unrealistic to find a threshold that is
suitable for all crowds because the crowd density varies
across scenes. In addition, these arbitrary clustering ap-
proaches neglect the intrinsic correlation inside the adjacent
graph. To be specific, if the graph is built with exactly c
connected components, the points should be clustered into
c groups. But existing works are limited in detecting the
groups according to the graph structure.

In this paper, a Multiview-based Parameter Free frame-
work (MPF) is proposed to mitigate the impacts of the above
problems. Multiview clustering, which partitions the data
by integrating different features, is used for group detection.
First, feature points are extracted and considered to be the
individuals in crowd scenes. And the orientation and con-
text graphs are built to perceive the individuals’ relationship
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Fig. 1. The pipeline of the proposed framework. First, an orientation graph is built according to the feature points’ orientation similarities. Then, a
structural context descriptor is proposed to describe the structures of points. Third, the graphs are integrated by a novel self-weighted multiview
clustering method. Finally, a merging approach is designed to combine the coherent subgroups.

on both the microcosmic and macroscopic views. Second,
with the orientation and context graphs, the subgroups are
obtained by a Self-weighted Multiview Clustering (SMC)
method. Two versions of SMC are developed based upon
the L1-norm and L2-norm. Finally, a tightness-based merg-
ing strategy is designed to combine the similar subgroups
into final groups. The pipeline of the proposed approach is
illustrated in Fig. 1. Our main contributions are summarized
as follows.

1. A structural context descriptor is designed to ex-
press the structures of feature points. The proposed
context descriptor can represent pedestrians’ motion
dynamics from the macroscopic view and is robust
to motion deviation.

2. A self-weighted multiview clustering method is de-
veloped to simultaneously integrate the orientation
and context relationship of points. Unlike exist-
ing multiview clustering approaches, the proposed
method doesn’t resort to any hyperparameter, and
this property makes it applicable for various cluster-
ing tasks.

3. A novel group detection framework is proposed,
which has salient advantages: (1) the incorporation of
features on multiple views; (2) the automatic decision
of group number without involving any arbitrary
threshold; (3) the capability of handling crowds with
varying densities.

Compared to the conference version of this research [24],
this paper is substantially improved by introducing more
technical parts and providing more experimental evalua-
tions. To be specific: (1) Section 4 proposes the L1-norm
version of the Self-weighted Multiview Clustering method,
which yields a new clustering objective, and a new opti-
mization algorithm is derived to solve the objective; (2) Sec-
tion 6.1 evaluates the proposed method on group number
estimation; (3) Section 6.2 introduces the experiments on
a synthetic dataset to demonstrate the robustness of SMC
to data noise. And the converge study of the multiview
clustering methods is also added.

The remainder of this paper is organized as follows.
Section 2 reviews the previous works on group detection
and multiview clustering. Section 3 introduces the details
to construct the orientation and context graphs. Section 4
presents the multiview clustering method to cluster the

points into subgroups. Section 5 put forward the tightness-
based merging strategy to combine the coherent subgroups.
In Section 6, experiments are conducted to validate the
proposed method. Conclusions and future works are made
in Section 7.

2 RELATED WORK

In this section, we first briefly review the related works on
group detection, and then some existing multiview cluster-
ing methods are introduced.

2.1 Group Detection

Detecting the groups in crowd scenes is a hot topic in
video surveillance. According to the type of study object,
previous methods can be roughly divided into two classes:
1) fixed particle-based approaches; 2) feature point-based
approaches.

For the first kind of methods, they overlay a grid of
particles on the crowd scene, and investigate the particles’
optical flow by particle advection. Ali and Shah [13] uti-
lized the Lyapunov exponent field to model the particles’
motion patterns, and then segmented the coherent flow.
Wu and Wong [14] proposed a local-translation domain
segmentation model to discover the collective motion. Hu
et al. [25] learned the motion patterns in crowds by utilizing
the instantaneous motions. Mehran et al. [1] employed the
social force model to find the abnormal groups. Mehran et
al. [26] designed the streakline descriptor to quantify the
flow of particles. Yuan et al. [2] profiled the crowd flow with
a potential energy function. Lin et al. [12] used the thermal
diffusion method to enhance the flow of particles, and
segmented the coherent particles by spectral clustering. The
major deficiency of the above methods is that they are time-
consuming, since each scene contains several thousands of
particles.

As for the second category, the trajectories of points are
taken as study objects. Ge et al. [15] detected the small
groups of pedestrians by hierarchical clustering. Zhou et
al. [16] found the stable neighbors of each point and com-
bined those with similar velocities. Zhou et al. [18] first
measured collectiveness of each point by graph learning,
and then detected collective motions by thresholding the
collectiveness. Shao et al. [17] presented the transition error
to refine the groups obtained by Zhou et al. [16]. Wang et
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al. [20] introduced an intention-based model to compare the
similarity of points, and then combined the similar points
into groups. Chen et al. [27] employed the manifold ranking
method for group detection. Zhang et al. [28] investigated
the spacing interactions of trajectories, and introduced a
group sparsity constraint to characterize the coherent mo-
tion patterns. Solera et al. [21] employed detection and
tracking methods to extract the pedestrians, and then con-
sidered each pedestrian as a point and investigated their
trajectories.

A drawback shared by all the above methods is that the
particles and points are too microcosmic to reveal the real
conditions of pedestrians. And most of them involve arbi-
trary thresholds, so they are impractical for crowd systems
with various densities.

2.2 Multiview Clustering

Multiview clustering aims to obtain the consensus cluster-
ing results across multiple views, and has inspired a surge
of interests [29], [30], [31], [32], [33], [34], [35], [36], [37], [38]
in machine learning.

Kumar et al. [29] extended the co-regularization strategy
into the spectral clustering scheme to achieve the clustering
goal, and let all the views share the same weight. Cai
et al. [30] learned a commonly shared Laplacian graph
from the multiview features, and proposed a non-negative
relaxation to improve the robustness. Xia et al. [31] han-
dled different features in different ways, and found a low-
dimensional projection to approximate all the features. X-
ia et al. [32] learned the transition probability matrix of
each view, and put the matrices into a Markov chain to
enforce the smoothness. Wahid et al. [33] introduced the
formulations of crossover, mutation and tuning steps, and
conducted multiview clustering with an evolutionary pro-
cess. Li et al. [34] integrated the heterogeneous features with
local manifold fusion, and approximated the graphs with
bipartite graphs to improve the efficiency. So this method
can deal with the large-scale problem. Zhang et al. [35]
regraded the input graphs as a tensor, and imposed a low-
rank constraint to exploit the complementary information
from different views. Li et al. [36] combined the local kernel
alignment technique into the multiview clustering frame-
work to preserve the local data structure. Liu et al. [37] con-
sidered the correlation among different views, and designed
a matrix-induced regularization to emphasize the diversity
of information sources. Instead of assuming the optimal
graph to be a linear combination of the input graphs, Liu
et al. [38] proposed an optimal neighborhood clustering
method to learn the optimal graph within the neighborhood
of the original graphs, which enhances the representability
of the optimal graph.

All of these methods resort to additional parameters,
which affects the performance directly and restricts the
applicability to process various kinds of data.

3 GRAPH CONSTRUCTION

In this section, the orientation and context graphs are con-
structed to capture the correlations of individuals. First, due
to the difficulty of detection and tracking in crowd scenes,

    (A) Low frame rate      (B) High frame rate

Fig. 2. Crowd frames with low and high frame rates. Yellow points indi-
cate the feature points, and the green circles indicate the neighborhood
of the corresponding points (red color).

feature points are regarded as individuals. In order to reveal
the orientation similarity of points, the orientation graph
is built adaptively based on the crowd density. Then, a
novel context descriptor is designed to profile the structural
properties of points, and a context graph is constructed to
capture the points’ relationship from the macroscopic view.

3.1 Adaptive Orientation Description
To capture the underlying moving principle inside a crowd
scene, it’s essential to identify the pedestrians. Due to the
serious occlusion and noise in crowds, it’s impractical to
extract pedestrians directly. So we alternatively take feature
points as study objects. The generalized Kandae-Lucas-
Tomasi (gKLT) tracker [18] is used to extract the feature
points, since it performs detection and tracking jointly with
efficient computation. As pointed out by behaviorists [39],
instead of keeping connections with all the others, indi-
viduals in crowds only interact with their local neighbors.
Thus, we need to find the neighbor relationship between the
points.

Most of the existing methods [15], [16], [17], [18], [20]
find the neighbors of each point by using kNN method,
which involves a parameter k. However, the value of k may
influence the overall performance greatly. And it’s infeasible
to choose a suitable k for the crowds with varying densities.
So we propose to find the neighbors of each point adaptively
according to the crowd density. Considering a frame with n
points, the spatial position of a point i (i = 1, 2, ..., n) is
denoted as (pxi , p

y
i ), and its orientation is denoted as

−−→
orii =

(orixi , ori
y
i ). Then the spatial distance between points i and

j is computed as

D(i, j) =
√
(pxi − pxj )

2
+ (pyi − p

y
j )

2
. (1)

Suppose there exists a variable r, and points i and j are
considered as neighbors if their distance D(i, j) is smaller
than r. Then the orientation graph Gm can be calculated as

Gm(i, j) =

{
max(

−−→
orii·

−−→
orij

|−−→orii|×|
−−→
orij |

, 0), if D(i, j) < r

0, else
, (2)

where themax() function prevents the similarity from being
negative. And the orientation similarity is 0 for the points
without neighboring relationship.

In Eq. (2), the value of r is crucial for the computation. In
this work, r is empirically set as the n-th smallest element
in all pairs of the distance D. Throughout experiments, we
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Fig. 3. Details about the construction of context graph.

find this setting is appropriate. Specifically, when n is fixed,
a higher point density corresponds to a smaller r, which
complies with the fact that the neighbors should reside
within a small radius if the points are with a high density.
In addition, existing tracking methods [40], [41] are limited
in dealing with the large variation between consecutive
frames. Thus, for videos with a low frame rate, there may be
only a few feature points although the crowd density is high,
as shown in Fig. 2 (A). In these occasions, the incorporation
of n prevents the value of r from being too large.

3.2 Structural Context Description

After the above stage, the orientation similarity of points is
captured. However, due to the motion deviation, the veloc-
ities of the points are too microcosmic to reveal the crowd
condition. So we propose to profile the feature points from
the macroscopic view. As aforementioned, points in crowd
scenes keep close relationship with their surroundings, so
the structural property of a point can be represented by
its neighbors. To this end, a novel Structural Context (SC)
descriptor is formulated to express the structure of each
point.

For each point i, its neighbor set C is obtained by in-
cluding the points within the radius r, as mentioned before.
Then, we divide the orientation space into 12 bins, as shown
in Fig. 3. Thus, the SC of i is defined as a vector with 12
elements, with its m-th element denoted as

SCi(m) = p(
−−→
oria ∈ binm|a ∈ C), (3)

where p(·) indicates the probability, and binm is the m-th
orientation bin.

SC is exactly the distribution of neighbors’ orientations
over the divided orientation space, so it can reveal the
structural properties of points. Our assumption behind this
descriptor is that when a point’s velocity fluctuates, the
neighbors’ velocities can assist to reveal its real condition.
Given the SC of each point, a context graph can be con-
structed as below

Gc(i, j) = exp{−1

2
[KL(SCi||SCj) + KL(SCj ||SCi)]}, (4)

where KL(SCi||SCj) =
∑12
m=1 SCi(m)log SCi(m)

SCj(m) is the
Kullback Leibler (KL) divergence between the SCi and SCj
[42]. Thus, the context graph is capable to describe the
similarity of points’ structures.

4 SELF-WEIGHTED MULTIVIEW CLUSTERING

In this section, we design two versions of the Self-weighted
Multivew Clustering method to cluster the points into sub-
groups. The optimization algorithms for the proposed two
objectives are also introduced. The proposed method learns
the weights of different views adaptively according to the
graph structure, so it’s parameter free.

4.1 Multiview Clustering Formulations
Generally speaking, group detection can be interpreted as
the clustering of points. In this part, both the orientation
and context graphs are integrated to cluster the points. We
first briefly review the Constrained Laplacian Rank (CLR)
method [22], which conducts clustering task based on a
single-view graph. Supposing there are n samples to be
classified into c clusters, the objective of CLR is

min∑
j Sij=1,Sij>0,rank(LS)=n−c

||S −G||2F , (5)

where S ∈ Rn×n is a target graph with exactly c connected
components, and || · ||F is the Frobenius Norm. G ∈ Rn×n is
the input graph, which indicates the similarity of samples.
And LS = DS−(ST +S)/2 ∈ Rn×n is the Laplacian matrix
of S. The rank constraint rank(LS) = n− c guarantees that
S contains exact c connected components, corresponding
to the desired c clusters. Therefore, the clustering objective
can be achieved as long as the optimal S is obtained. The
superiority of CLR can be summarized from two aspects: 1)
it performs well even when the input graph is constructed
with low quality; 2) unlike other spectral-based clustering
methods [30], [32], [43], it doesn’t need any post-processing.

To investigate the data correlation captured from dif-
ferent aspects, we extend CLR to the multiview clustering
scheme. Denoting n and nv as the number of samples
and views respectively, the graphs corresponding to the nv
views are written as G(1), G(2), ..., G(nv) ∈ Rn×n. Different
from problem (5), we aim to find a S that approximates each
of the graphs, so the optimization problem is

JL2 = min
w(v),S

||S −
nv∑
v=1

w(v)G(v)||2F

s.t.w(v) > 0,
∑

v
w(v) = 1, Sij > 0,∑

j
Sij = 1, rank(LS) = n− c,

(6)

where scalar variable w(v) is the weight of the graph G(v).
In addition, since L1-norm distance is more robust to

noise compared with L2-norm distance, we further define a
L1-norm objective:

JL1 = min
w(v),S

||S −
nv∑
v=1

w(v)G(v)||1

s.t.w(v) > 0,
∑

v
w(v) = 1, Sij > 0,∑

j
Sij = 1, rank(LS) = n− c,

(7)

where || · ||1 is the L1-norm.

4.2 Optimization Algorithms
Without prior knowledge, an intuitive idea is assigning the
equal weight to each graph, just as [29]. However, this
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strategy ignores the diversity of different views and tends
to be gravely affected when some views perform badly.
Thus, we aim to approximate the graphs with different
confidences. For this purpose, two self-conducted weight
learning algorithms are proposed to solve problem (7) and
(6) respectively.

Optimization Algorithm for Solving JL2 in Eq. (6)
Eq. (7) is difficult to solve because the constraint

rank(LS) = n − c is a nonlinear constraint. According to
Nie et al. [22], enforcing the rank constraint is equivalent to
solving the following problem

min
F∈Rn×c,FTF=I

Tr(FTLSF ), (8)

where Tr() is the trace operator, and Rn×n is the identity
matrix. Therefore, problem (6) can be transformed into the
following problem

min
w(v),S,F

||S −
nv∑
v=1

w(v)G(v)||2F + λTr(FTLSF )

s.t.w(v) > 0,
∑

v
w(v) = 1, Sij > 0,∑

j
Sij = 1, F ∈ Rn×c, FTF = I,

(9)

where the parameter λ can be tuned automatically in a
heuristic way according to the number of connected com-
ponents in LS [22]. Then we propose to optimize w(v), S
and F iteratively.

When w(v) and S are fixed, problem (9) becomes prob-
lem (8). According to the spectral theory [43], the optimal F
is formed by the c eigenvectors of LS corresponding to its k
smallest eigenvalues.

When w and F are fixed, problem (9) becomes the
following problem

min∑
j Sij=1,Sij>0

||S −
nv∑
v=1

w(v)G(v)||2F + λTr(FTLSF ), (10)

and the details of optimization can be referred to [22].
When S and F are fixed, the problem seems complicated

to solve because it can’t be directly decoupled into rows.
So we transform problem (4) into a different form, which
is a crucial step for the optimization. The target graph
S is first converted into a column vector a ∈ Rn

2×1,
and the input graphs G(1), G(2), ..., G(nv) are also convert-
ed into B(1), B(2), ..., B(nv) ∈ Rn

2×1. Denoting a matrix
B ∈ Rn

2×nv with its v-th column equal to B(v), and
denoting a vector w = [w(1), w(2), ..., w(nv)]T ∈ Rnv×1,
Eq. (9) naturally becomes a vector form problem

min
w1=1,w>0

||a−Bw||22, (11)

which is much easier to solve, and 1 ∈ Rnv×1 is the vector
with all the elements equal to 1. Spreading the terms in
Eq. (11), the problems becomes

min
w1=1,w>0

1

2
wTBTBw − wTBTa. (12)

The above function is a standard quadratic programming
(QP) problem, which can be readily solved by an iterative
algorithm [22].

The detailed algorithm for solving problem (6) is provid-

ed in Algorithm 1.
Optimization Algorithm for Solving JL1 in Eq. (7)
Similar to the above transformation, problem (7) is e-

quivalent to the following problem

min
w(v),S,F

||S −
nv∑
v=1

w(v)G(v)||1 + λTr(FTLSF )

s.t.w(v) > 0,
∑

v
w(v) = 1, Sij > 0,∑

j
Sij = 1, F ∈ Rn×c, FTF = I,

(13)

During the optimization, F is updated as in Eq. (8). And
when w and F are fixed, problem (13) becomes the follow-
ing problem

min∑
j Sij=1,Sij>0

||S −
nv∑
v=1

w(v)G(v)||1 + λTr(FTLSF ), (14)

which can be optimized by the L1-norm solution in [22].
When S and F are fixed, problem (13) is transformed

into

min
w(v)
||S −

nv∑
v=1

w(v)G(v)||1

s.t.w(v) > 0,
∑

v
w(v) = 1.

(15)

Denoting a, B and w as the same definition in the L2-norm
solution, the above problem is simplified into the following

min
w1=1,w>0

||a−Bw||1. (16)

With the iterative reweighted method [44], the above prob-
lem can be optimized by solving the following one iterative-
ly:

min
w1=1,w>0

Tr(a−Bw)TU(a−Bw), (17)

where U ∈ Rn×n is a diagonal matrix with its i-th diagonal
element as 1

2|ai−Biw̃| , and w̃ is the current solution of w.
Nie et al. [44] have proved that the iterative method will
finally converge to the optimal solution of problem (16).
Problem (17) can be spread into the following form

min
w1=1,w>0

1

2
wTBTUBw − wTBTUa, (18)

which is with the similar form to problem (12). Algorithm 2
provides the detailed algorithm to solve problem (7).

With the suggested optimization algorithm, given an
initial w, the closed form solution of problem (6) and (7)
can be computed by updating S, F and w alternately until
convergence. Different from existing multiview clustering
algorithms [29], [30], [31], [32], [33], [34], [37], [38], the
proposed method is totally self-weighted, and doesn’t resort
to any hyper parameter. This property is promising because
we do not need to tune those additional parameters when
handling various crowds. And the convergence study of the
optimization algorithms will be given in Section 6.2.

4.3 Discussion
In the group detection task, there are two views to be
learned, so the weight vector is initialized as [ 12 ,

1
2 ]
T . The

cluster number c is set as the number of strongly connected
components in the context graph, which can be efficiently
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Algorithm 1 Algorithm to solve problem (6)

Input: Data graphs G(1), ..., G(2), cluster number c, number
of views nv .

1: Initialize w(1), ..., w(nv) as 1
nv

.
2: Initialize S as

∑nv
v=1 w

(v)G(v).
3: repeat
4: Update F by solving Eq. (8).
5: Update S by solving problem (10).
6: Convert S into a column vector a, convert
G(1), ..., G(2) into a matrix B, denot a vector w =
[w(1), ..., w(nv)], update w by solving problem (12).

7: until Converge

Algorithm 2 Algorithm to solve problem (7)

Input: Data graphs G(1), ..., G(2), cluster number c, number
of views nv .

1: Initialize w(1), ..., w(nv) as 1
nv

.
2: Initialize S as

∑nv
v=1 w

(v)G(v).
3: repeat
4: Update F by solving Eq. (8).
5: Update S by solving problem (14).
6: Convert S into a column vector a, convert
G(1), ..., G(2) into a matrix B, denot a vector w =
[w(1), ..., w(nv)], update w by solving problem (18).

7: until Converge

computed by the Depth First Search method [45]. Then,
graphs on both the orientation and context views are inte-
grated to learn the target graph S by solving problem (6) or
(7). The obtained S contains exact c connected components,
so it can also be considered as an indicator matrix, where
Sij > 0 indicates that points i and j belong to the same
cluster. Since S assigns a cluster index to each point, the
clustering procedure is accomplished immediately when the
optimal solution of problem (6) or (7) is acquired. However,
in crowd scenes, not all the points in one group keep close
connections with each other, and they are actually united
in a weakly connected component. When calculating c,
a weakly connected component may be split into several
strongly connected ones, leading to an overestimation of
cluster number. Thus, it’s necessary to merge the obtained
subgroups that actually belong to the same group.

5 TIGHTNESS-BASED MERGING

To combine the coherent subgroups acquired by the previ-
ous stage, a tightness-based cluster merging strategy is put
forward. Denoting the learned weights of the orientation
and context graph as wm and wc respectively, an integrated
graph is presented as

G = wmGm + wcGc. (19)

The graph G approximates both the orientation and context
graph of points. The reason that we don’t use the learned
target graph S is that due to the rank constraint, the simi-
larity in S is 0 for points clustered into different subgroups.
So S is unsuitable to decide whether two subgroups are
consistent.

    (A) Subgroups     (B) Final Groups

Fig. 4. Comparison of groups (A) before and (B) after merging. Scat-
ters with different colors indicate different detected groups, and arrows
indicate motion orientations.

Inspired by the theory that connection of pedestrians
leads to the emergence of groups [39], a tightness measure
is put forward to capture the intra-relationship of subgroup-
s. We assume there exists an anchor point within each
subgroup, which could reflect the motion pattern of the
corresponding subgroup. Then the tightness of a subgroup
is considered to be the behavior consistency between the
anchor point and the others.

With the weight graph G, we find the anchor within
each subgroup. First, the collectiveness is calculated for each
point, which describes the consistency between the corre-
sponding point and all the others in the same subgroup.
Denoting a subgroup as subα, the collectiveness of a point i
within subα is

φi =
∑

j∈subα

G(i, j). (20)

The anchor point is assumed to be consistent with others
and surrounded by many neighbors. Denoting the anchor
of subα as q, we can locate it according to its collectiveness
and number of neighbors,

q = max
i∈subα

(φi + δi), (21)

where δi records the number of i’s neighbors. Thus, the
tightness T of subα is the collectiveness of its anchor point
q,

T (subα) = φq. (22)

With all the above quantitative definitions, we can target on
the merging of subgroups. If the merging of two subgroups
will produce a higher tightness, then the subgroups are
supposed to be coherent. Two subgroups subα and subβ are
consistent if

T (subα + subβ) > max[T (subα), T (subβ)]. (23)

Through experiments, we have found that the anchor al-
ways resides in the center of a subgroup. A higher tightness
means that the center of the merged group has a higher
collectiveness than the original anchors, so the subgroups
are coherent. By merging consistent subgroups iteratively,
the final groups are obtained. Since the sequence of merging
will affect the result, we only combine the pair of subgroups
with the highest value of T (subα + subβ) in each iteration.

Benefiting from the merging operation, local coherent
motions are automatically combined into global motions,
as shown in Fig. 4. The merging procedure stops when
no coherent subgroups are qualified to be combined, so
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Fig. 5. Representative results of different group detection methods, and the changing trends of wo and wc with the number of iterations. Scatters
with different colors indicate different detected groups, and arrows indicate motion orientations. The results of MPF L1 are consistent with the
ground truth.

TABLE 1
Quantitative comparison on group detection. Best results are in bold

face, and the second-best results are underlined.

HC CF CT CDC MCC MPF L1 MPF L2

ACC 0.63 0.70 0.75 0.67 0.68 0.83 0.80
F-score 0.62 0.67 0.74 0.67 0.67 0.80 0.79
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Fig. 6. The relative improvements of (A) MPF L1 and (B) MPF L2
compared with HC, CF, CT, CDC and MCC.

it provides a more principled termination criterion than
choosing an arbitrary threshold manually [16], [17], [18],
[20].

6 EXPERIMENTS

In this section, the proposed group detection framework is
evaluated on group detection and group number estimation.
And the effectiveness of the proposed multiview clustering
method is also demonstrated. Throughout all the experi-
ments, we let the competitors use their respective optimal
parameters.

6.1 Evaluation of the Multivew-based Parameter Free
Framework

In this work, the CUHK Crowd Dataset [17] is used to verify
the proposed framework’s performance on group detection
and group number estimation. Four state-of-the-art group
detection methods are chosen for comparison. The group
detection framework with L1-norm and L2-norm clustering
objectives are termed as MPF L1 and MPF L2 respectively.
Two widely used metrics, the accuracy (ACC) [46] and
F-score [32] are taken as measurements to evaluate the
methods quantitatively.

Dataset: CUHK Crowd Dataset consists of 474 crowd
videos, where the frame rate varies from 20 to 30 fps. And
the crowd densities and perspective scales are different.
Group label for each feature point is annotated by human
observers. We perform group detection on every video and
average the obtained ACC and F-score as experimental
results.

Competitors: To demonstrate the effectiveness of the
proposed group detection framework, five state-of-the-art
methods, Hierarchical Clustering (HC) [15], Coherent Fil-
tering (CF) [16], Collective Transition (CT) [17], Measuring
Crowd Collectiveness (MCC) [18] and Coherent Density
Clustering (CDC) [19], are taken for comparison.

Performance on Group Detection
The group detection results of different methods are

shown in Table 1. And the improvements of MPF L1 and
MPF L2 over the competitors are visualized in Fig. 6. It’s
manifest that the proposed MPF L1 and MPF L2 achieve
the highest two ACC and F-score, which indicates that they
perform better than the competitors. HC clusters the trajec-
tories of points hierarchically according to their Hausdorff
distances. CF and CT detect groups by extracting the invari-
ant neighbors of each point. MCC detects collective motions
by thresholding the collectiveness of points. CDC employs
a density-based clustering approach to cluster points. All
the above methods only utilize the orientation feature, and
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Fig. 7. Performance of CF, CT and MCC with varying k. Scatters with
different colors indicate different detected groups, and arrows indicate
motion orientations.

TABLE 2
Comparison of MPF L2 and its variants. Best results are in bold face.

MPF L2 r=15 r=25 r=35 View-m View-c

ACC 0.80 0.71 0.78 0.71 0.72 0.70
F-score 0.79 0.72 0.78 0.72 0.73 0.69

neglect the structural properties of points. So they tend
to be affected by motion deviation and the fluctuation
of points’ velocities. The proposed MPF L1 and MPF L2
jointly incorporate the orientation and context features with
a multiview clustering method, so they are able to perceive
the motion patterns more accurately, and detect groups
more correctly. Fig. 5 shows some representative results
of different group detection methods. We can see that the
results of MPF L1 is more consistent with the ground truth.
Note that, the performance of MPF L2 is slightly inferior
to that of MPF L1 because the Frobenius norm squares the
residue error of each element, so MPF L2 is prone to be
affected by the outliers in the data graphs, which may be
caused by velocity fluctuation.

The proposed MPF L1 and MPF L2 share the promising
property that no parameter or threshold is involved. To
better illustrate the importance of this property, we compare
the results of CF, CT and MCC with varying parameter. The
above three methods are chosen because they all involve
a kNN processing. Fig. 7 shows the clustering results of
CF, CT and MCC on a video clip where k is set as 5,
15 and 25. The corresponding ACC is also exhibited. The
results show that the performance of these three methods
is sensitive to the value of k. For crowd motions with
various densities, it’s hard to chose an appropriate k that
satisfies all occasions. Though CDC doesn’t need the kNN
procedure, it has several additional thresholds to be tuned,
so it’s not applicable as well. The proposed MPF L1 and
MPF L2 avoid this problem naturally because it’s totally

Fig. 8. Representative results of MPF L2 on MPT-20x100 dataset.
Each point corresponds to a pedestrian (points are on the bottom of
pedestrians). Scatters with different colors indicate different detected
groups, and arrows indicate motion orientations.

parameter free.
We also show the performance of utilizing orientation

view and context view separately, denoted as View-o and
View-c. Here the L2-norm clustering objective is used. As
exhibited in Table 2, View-o achieves better results than
View-c. This result doesn’t mean that context feature fails
on all videos. We visualize the changing trend of wo and wc
versus the number of iterations in Fig. 5. For the scene in
the first row, the value of wc increases while wo decreases.
On this occasion, context feature captures the pedestrians’
movements better because that there are many points on
the same pedestrian, and the motion deviation is serious.
Meanwhile, for the videos captured from the overlooking
perspective (second and third rows in Fig. 5), orientation
feature performs better since the pedestrians are small and
their velocities can be approximated by those of feature
points. Besides, Table 2 shows MPF L2 is better than View-
m and View-c, so we conclude that the proposed Structural
Context descriptor (SC) assists the orientation aspect, and
the combination of them is reasonable. Moreover, when
there is only one view, the clustering method exactly re-
duces to the original CLR. And the superior performance of
MPF L2 demonstrates that the proposed multiview cluster-
ing method is more useful than CLR because it is able to
integrate the features captured from multiple views.

In addition, MPF sets the relationship threshold r as the
the n-th smallest element in D. To demonstrate the validity
of this adaptive setting, we fix r as 15, 25 and 35, and show
the corresponding performance in Table 2. When r equals
to 15 and 35, the performance drops dramatically. This is
because a small value of r makes a group divided into
parts, while a large r brings some noise. The performance is
relatively well when r is 25, but it’s not so good as MPF L2
because a fixed r can’t be suitable for crowd videos with
various densities and frame rates. Therefore, the adaptive
decision of parameter r does improve the overall perfor-
mance of the MPF L2.

MPF performs well when clustering feature points, and
we further show its ability to handle the pedestrians directly.
Here we run the proposed method on the MPT-20x100
dataset [21], which contains 20 crowd videos and provides
the trajectory of each pedestrian. Some representative results
of MPF L2 on MPT-20x100 dataset are shown in Fig. 8. It
can be seen that the proposed method correctly connects
the pedestrians with similar motion patterns. The number of
pedestrians is much less than that of feature points, but MPF
still performs well because it is parameter-free and can deal
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Fig. 9. Clustering results on the block diagonal synthetic data by SMC L1 and SMC L2 methods.

TABLE 3
Performance on group number estimation. Best results are in bold face,

and the second-best results are underlined.

HC CF CT CDC MCC MPF L1 MPF L2

AD 2.83 2.45 1.63 1.59 2.02 1.16 1.12
VAR 3.41 3.01 1.83 1.84 2.56 1.27 1.35

with the trajectories with various densities. So our method
can also deal with the pedestrians’ trajectories directly.

Performance on Group Number Estimation
The proposed group detection methods decide the group

number automatically without any arbitrary processing.
Here we validate their performance on group number es-
timation. Two widely used metrics, namely Average Differ-
ence (AD) and Variance (VAR) [19] are used to evaluate the
performance. A lower AD means a lower deviation from
the ground truth, and a low value of VAR indicates a stable
performance. The experimental results are shown in Table 3.
The AD and VAR of MPF L1 and MPF L2 are lower than
the other methods. HC, CF and MCC fail because they
roughly combine the points with similar velocities into the
same group, and can’t recognize the subtle differences of
points’ motion patterns. CT refines the results of CF by in-
troducing the transition error, so it performs better than CF.
CDC detects groups with a multi-stage clustering strategy,
which is able to detect both the local and global coherent
motion, so it also performs well. MPF L1 and MPF L2 first

cluster the points into subgroups, and then combine the
coherent subgroups according to their tightness, so they are
capable of deciding the group number precisely and achieve
the best results.

Computational Efficiency
In Section 2, we have mentioned that the particle-based

approaches are time-consuming. Here we demonstrate this
statement by comparing the proposed methods with two
classical particle-based methods, including Lagrangian Co-
herent Structures (LCS) [13] and Streakline [26]. Denoting
the three frames in Fig. 5 as Frame 1, Frame 2 and Frame 3
respectively (from top row to bottom row), we run MPF L1,
MPF L2, LCS and Streakline on these frames and show the
time costs in Table 4. When calculating the time cost, we
ignore the feature extraction stage and just consider the
computation of group detection. As shown in Table 4, the
efficiency of the particle-based methods has great relation
with the frame size. Larger frame size brings more particles
to be processed. On the other hand, the time costs of both
MPF L1 and MPF L2 depend on the number of feature
points. Since the amount of feature points is much less than
that of particles, the proposed methods are more efficient
than the particle-based algorithms.

6.2 Evaluation of Self-weighted Multiview Clustering
method

In this part, experiments are conducted on a synthetic
dataset and four real-world datasets to demonstrate the
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TABLE 4
Efficiency comparison with particle-based methods. Best results are in bold face.

Frames Point number Frame size LCS Streakline MPF L1 MPF L2

Frame 1 1029 480×640 13.93s 62.84s 0.93s 0.91s
Frame 2 597 480×856 19.14s 80.63s 0.36s 0.36s
Frame 3 460 480×856 18.53s 79.17s 0.25s 0.24s

TABLE 5
ACC (mean ± standard deviation%) on multiview datasets. Best results are in bold face.

Dataset Co-reg RMSC MMSC AMGL IVA SMC L1 SMC L2

MSRC-v1 70.00±5.50 67.41±4.91 71.00±4.46 72.30±4.59 73.43±4.72 78.10 70.00
Digits 79.39±4.98 77.40±5.23 83.75±9.04 72.91±9.23 85.41±5.29 87.65 87.50

Caltech101-7 42.52±3.04 58.55±2.79 69.76±3.96 56.33±5.71 68.51±3.74 80.73 68.11
Caltech101-20 48.18±4.16 51.22±3.03 51.04±3.81 44.12±4.67 50.32±4.28 58.63 59.51

TABLE 6
F-score (mean ± standard deviation%) on multiview datasets. Best results are in bold face.

Dataset Co-reg RMSC MMSC AMGL IVA SMC L1 SMC L2

MSRC-v1 59.05±5.02 59.37±3.49 61.44±5.42 61.52±2.40 62.25±3.01 71.06 59.81
Digits 71.93±2.37 68.98±3.78 79.20±8.36 71.65±8.59 84.32±6.59 86.31 86.46

Caltech101-7 44.50±2.93 55.66±1.44 69.34±4.64 57.96±3.78 69.10±2.73 76.93 64.11
Caltech101-20 39.12±3.49 46.21±2.33 40.59±4.10 37.25±3.88 46.59±3.10 48.33 42.27

0.3 0.7 1.1 1.6 2.0
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

AC
C

 | 
F−

sc
or

e

log10γ

ACC−MMSC 
Fscore−MMSC 
ACC−SMC_L2 
Fscore−SMC_L2

0.3 0.7 1.1 1.6 2.0
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

AC
C

 | 
F−

sc
or

e

log10γ

ACC−MMSC 
Fscore−MMSC 
ACC−SMC_L2 
Fscore−SMC_L2

0.3 0.7 1.1 1.6 2.0
0.5

0.6

0.7

0.8

0.9

AC
C

 | 
F−

sc
or

e

log10γ

ACC−MMSC 
Fscore−MMSC 
ACC−SMC_L2 
Fscore−SMC_L2

0.3 0.7 1.1 1.6 2.0
0.5

0.55

0.6

0.65

0.7

0.75

AC
C

 | 
F−

sc
or

e

log10γ

ACC−MMSC 
Fscore−MMSC 
ACC−SMC_L2 
Fscore−SMC_L2

(A) MSRC-v1 (B) Digits (C) Caltech101-7 (D) Caltech101-20

Fig. 10. Performance comparison of MMSC and SMC L2 on four datasets. We can see that MMSC is sensitive to the value of γ, while SMC L2
sustains good performance on different datasets.
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Fig. 11. Convergence analysis of SMC L1 and SMC L2 on MSRC-v1 and Digits datasets.
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Fig. 12. ACC curves of SMC L1 and SMC L2 on MSRC-v1 and Digits datasets.

effectiveness of the proposed Self-weighted Multiview Clus-
tering (SMC) method. The L1-norm and L2-norm versions
of SMC are denoted as SMC L1 and SMC L1 respectively.

Block Diagonal Synthetic Dataset
Datasets: The synthetic dataset consists of two 100×100

matrices, as shown in the first two columns of Fig. 9. View
1 denotes the affinities of the points in the first cluster (1 to
50), and View 2 records the affinities in the second cluster
(51 to 100). Each cluster corresponds to a block, and the
affinity data within each block is randomly generated in the
range of 0 and 1. And the noise data outside the blocks is
generated in the range of 0 and σ. In the first, second and
third rows of Fig. 9, the noise percent σ is set as 0.6, 0.7
and 0.8 respectively. An ideal multiview clustering method
should integrate the two matrices and produce two clusters.

Performance: The clustering results of SMC L1 and
SMC L2 are shown in the third and fourth columns in
Fig. 9. Under different percent of noises, both SMC L1
and SMC L2 accurately partition the points into the correct
clusters. SMC L1 and SMC L2 learn the optimal graph by
exploiting the correlation of input graphs adaptively, so
both of them are able to recover points’ relationship from
multiple views, and are robust to noise.

Real-world Datasets
Datasets: Four standard real-world datasets are em-

ployed to evaluate the proposed SMC, including MSRC-v1
[47], Digits [48], Caltech101-7 and Caltech101-20 [49]. The
details of the datasets are as follows.

• MSRC-v1. Following Nie et al. [50], we choose 210
images from 7 classes in the MSRC-v1 dataset, and
extract 5 visual features (CMT, HOG, LBP, GIST and
CENT).

• Digits. This dataset consists of 2000 handwritten
images from 10 classes, and 6 features (FOU, FAC,
KAR, PIX MOR and ZER) are released for clustering.

• Caltech101-7. The dataset is composed of 1474 im-
ages with 6 kinds of features (Gabor, WM, LBP, SIFT,
GIST and CENT), belonging to 7 classes.

• Caltech101-20. The dataset contains 2386 images
from 20 classes, and the features are the same as those
in Caltech101-7.

Competitors: The proposed SMC L1 and SMC L2 are
compared with five state-of-the-art multiview clustering
methods, including Co-regularized spectral clustering (Co-
reg) [29], Robust Multiview Spectral Clustering (RMSC)
[32], Multi-Modal Spectral Clustering (MMSC) [30], Auto-
weighted Multiple Graph Learning (AMGL) [51], and It-

erative Views Agreement (IVA) [52]. Since the results of
competitors may be influenced by the post-processing, the
experiments are repeated for 30 times, and the averaged re-
sult is reported. For our methods and MMSC, the multiview
graphs are constructed with an efficient method [22], where
the neighborhood size is set as 10. For other competitors, the
graphs are constructed with the suggested approaches.

Performance: Table 5 and 6 exhibit the averaged ACC and
F-score of Co-reg, MMSC and the proposed methods. It can
be seen that SMC L1 achieves the best performance on most
occasions. The performance of SMC L2 is also promising.
The results of all the competitors are dependent on the
initialization of K-means, while ours are stable because no
post-processing is needed. Co-reg fails in most cases because
it requires prior knowledge to determine the weights of
different views, which is not provided in the datasets. The
performance of RMSC is unsatisfactory because it tends to
be seriously influenced by the weak views. AMGL reformu-
lates the spectral learning model, and searches the new rep-
resentation of original data adaptively. But its performance
is sensitive to the post-processing. MMSC and IVA obtain
close results to SMC L2, however, they are not so practical
as our method because they rely on the extra parameters.
For a better interpretation, we compare the performance of
SMC L2 and MMSC on different datasets. The hyperparam-
eter γ of MMSC, which controls the distribution of different
weights, is set with different values, as shown in Fig. 10.

In Fig. 10, we note that MMSC enjoys satisfying results at
the optimal γ on MSRC-v1 and Caltech101-7, but its perfor-
mance drops dramatically with the change of γ. The value
of γ influences the performance of MMSC. But the optimal
values on the four datasets are different, and it’s unrealistic
to chose a γ that is suitable for different applications. The
proposed SMC L2 performs well under all circumstances
because it does not rely on any parameter. It is worthwhile
to mention that compared to the slight difference on group
detection, SMC L1 outperforms SMC L2 a lot on multiview
clustering. This is because that the multiview clustering
datasets contain more data points with higher dimensions,
and the view number is larger. So the data graphs contain
more outliers. Since the L1-norm is more robust to outliers,
SMC L1 achieves better performance than SMC L2. To sum
up, the L1-version is suitable to handle the data with large
noise, and the L2-version is appropriate to process the data
with less outliers.

Convergence Study
Here we prove the convergence of the proposed opti-

mization algorithms. For both the SMC L1 and SMC L2,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, XXX XXX 12

the optimal S, F and w are searched in each iteration.
So the objective value decreases monotonically and finally
converges to a local optima. The objective values of SMC L1
and SMC L2 at each iteration are plotted in Fig. 11. As
observed from the figure, the optimization algorithms con-
verge quickly in less than ten iterations.

In addition, the ACC curves are also shown in Fig. 12.
The clustering accuracies increase during the iterations,
which means that the objective values of SMC L1 and
SMC L2 are consistent to the accuracies. So we come to a
conclusion that our objectives are appropriate for multiview
clustering.

7 CONCLUSION AND FUTURE WORK

This paper proposes a Multiview-based Parameter Free
framework (MPF) for group detection. A novel Structural
Context descriptor is put forward to profile the structural
properties of feature points. Two versions of the Self-
weighted Multiview Clustering method are designed to
integrate the points’ correlations from both the orientation
and context views. A tightness-based merging strategy is
developed to combine the coherent local groups reasonably.
Extensive experiments on various kinds of datasets demon-
strate the effectiveness of the proposed group detection
framework and the multiview clustering method.

In the future work, we want to tackle the detection and
tracking problems in crowd scenes, which will improve the
achieved performance to a great extent. It’s also desirable
to design more effective features to perceive the crowd
behaviors.
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